
ICT365

Software Development Frameworks

Dr Afaq Shah

ADO.net

Learning objectives

• To be able to program the key components of a
C#/.NET application for

- Establishing a database connection

- Defining a data model for its tables

- Querying the database

COMPSCI 2803

Topics

Important .NET Class libraries: Windows Forms,
ADO.NET, ASP.NET, XML and Web Services

ADO.net

Establishing a database connection

Defining a data model for its tables

Querying the database

Framework Class Libraries

Much of the power of .NET comes from its standard class
libraries - Framework Class Libraries, eg:

mscorlib.dll

system.dll

system.data.dll (System.Data namespace)

system.drawing.dll (System.Drawing namespace)

system.web.dll (System.Web namespace)

system.web.services.dll (System.Web.Services
namespace)

system.windows.forms.dll (System.Windows.Forms
namespace)

system.xml.dll (System.Xml namespace)

E.g.

ADO.NET:

a set of classes and tools for creating data base
applications.

can connect to databases -> SQL Server, Oracle and
Microsoft Access

ASP.NET:

a set of classes and tools for creating web applications.

Web Services

are internet based applications that use XML messages
(SOAP messages) for communications.

6

Introduction to ADO.NET

Active Data Objects

• A set of class definitions included in the .NET
Framework

• Objects collaborate to provide .NET applications
(relatively) easy access to databases.

• Designed for scalability.

Oracle

• Probably we will use this instead of MS
SQLServer

• Later we may look at Azure, a cloud-based
solution, but it’s a little complicated getting set
up, so instead, We will use:

• Oracle.

• Following slides cover MySQL, but its more or
less the same for Oracle

MySQL/Oracle and .NET

• Principles are the same regardless of the database solution

• Get the infrastructure (DBMS and its tools)

• Set up a database and get its server running

• Establish interoperability of the database and the .NET
environment

.NET is proprietary to Microsoft

Add to your program a ‘connection’

This specifies:

the running DBMS service,

database (set of tables, views etc.)

your ‘login’ as an authorised user on that database

9

Specifics: setting up a database

• Get MySQL running

Install XAMPP to get MYSQL, Apache, XAMPP
Control Panel and PHPMyAdmin

Then just start Apache* and MySQL in XAMPP
Control Panel

Use PHPMyAdmin (or MySQL console) to build a
database (e.g., ‘employee’) with an employee
table, and also to add a user (“Tim”) and give
that user permissions on the database

* Apache only needed for PHPMyAdmin - .NET will use Internet
Information Server (IIS) Express to serve the applications Web pages

COMPSCI 28010

Specifics: interoperability

Install MySQL Connector Net on the machine

An ADO.NET driver for MySQL

Install ‘Packages’ on the .NET application

Entity Framework (EF)

MySQL

MySql.Data, MySql.Data.Entities and (for a Web project)
MySql.Web

• Now your C#/.NET application is ready to talk to a MySQL
database through ADO.NET (and extended with EF)

The ADO.NET Object Model

Adapter

Command

Reader

Connection

DataSet

D

A

T

A

B

A

S

E

C

L

I

E

N

T

Data
Provider

ADO.NET

Handles
communication
with a physical

data store.
The actual data

Knows how to do SQL commands
on the database

A light weight object for
sequential read-only access to a

query result.

Provides general
disconnected access to

data

http://msdn.microsoft.com/en-us/library/a6cd7c08.aspx

http://msdn.microsoft.com/en-us/library/a6cd7c08.aspx

ADO.NET Architecture Diagram

ADO.NET Namespaces

System.data Core namespace, defines types that

represent data

System.Data.Common Types shared between managed providers

System.Data.OleDb Types that allow connection to OLE DB

compliant data sources

System.Data.SqlClient Types that are optimized to connect to

Microsoft® SQL Server

System.Data.SqlTypes Native data types in Microsoft® SQL

Server

Connection String

MS SQL Server Examples

connStr = "server=scorpio.edu.au; User ID=gnulu;
Password=xxxxxxx"

connStr = "server=mssql99.blah.net; database=DB_999;

User ID=kangaroo; Password=xxxxx"

connStr = "server=(local)\\VSDOTNET;
database=Bulk_Mail_Addresses;
Trusted_Connection=yes";

Data Provider Objects

• Command Object

Knows how to execute a SQL command on a server

• Properties:

CommandText

A SQL statement to be executed at the data source.

SqlCommand1.CommandText = "SELECT * FROM Address_List";

Can be changed by the program.

• Methods

ExecuteReader

ExecuteScalar

ExecuteNonquery

Data Provider Objects

• DataReader

• A fast, low-overhead object, similar to a
StreamReader for file input.

• Provides forward-only, read-only stream of data from
a data source

• Created by calling the ExecuteReader method of a
Command object

Never with “new”

• Connection must remain open while the DataReader is
used.

Data Provider Objects

• There are two kinds of “Adapters”

Data Adapter

Present in ADO 1.0

Continued in ADO 2.1

Table Adapter

New in ADO 2.0

DataAdapter

• Provides access to a collection of data
from a data source

Permits client to close connection while
processing the data.

Effectively provides a local cache

Client accesses the cache rather than the actual
database.

• Actual database can be updated when
desired.

Data Provider Objects

• DataAdapter

Contains four Command Objects:

SelectCommand

UpdateCommand

InsertCommand

DeleteCommand

Uses SelectCommand to fill a DataSet

Uses other command objects to transmit changes
back to the data source

Table Adapter

• A Table Adapter component fills a dataset with
data from the database.

• Table Adapters can also perform adds, updates,
and deletes on the database.

• Includes a DataAdapter and a Connection
object.

• Improves functionality and ease of use of the
original DataAdapter.

DataSet

• In-memory copy of data

• No connection to a database.

• Simple form of relational database

- collection of tables

- collection of DataRelations

The DataSet

From ADO.NET 2.0 Step by Step

DataSet

• The DataTable

Columns

Like the column defintions from a SQL
CREATE TABLE statement

Name, Data Type, Max Length, Allows Nulls

Rows

The data

Constraints

Foreign Key

Unique

DataSet

• Data Relation

Programmatic interface for navigating from a
master row in one table to related rows in
another.

Does not enforce referential integrity

A foreign key constraint does that.

DataSet

• A DataSet object can exist independently of any
database.

• We will only use DataSets to hold data retrieved
from a database.

Really ‘raw’ access

• Example

...

using MySql.Data.MySqlClient;

...

static void Main(string[] args)

{

string cs =

@"server=100.222.99.999;uid=gil;pwd=ICT365;database=Session3";

MySqlConnection conn = null;

try {

conn = new MySqlConnection(cs);

conn.Open();

Console.WriteLine("MySQL version : {0}", conn.ServerVersion);

MySqlCommand cmd =

new MySqlCommand("select * from employee",conn);

MySqlDataReader reader=cmd.ExecuteReader();

reader.Read();

Console.WriteLine(reader.GetString(1));

}

catch (MySqlException ex) {

Console.WriteLine("Error: {0}", ex.ToString());

}

finally {

if (conn != null) conn.Close();

}

...

A connection needs to specify server,
user, password and database

Sending text of SQL to
the DBMS, then reading

one line and printing
content of its 2nd field

Closing the database
connection when we’re done,

managed in try… catch… finally

ADO.NET and Entity Framework

• A set of components to access data in the .NET
framework

Evolved from ‘ActiveX Data Objects’ (ADO) (at least that’s
the origin of its name)

• Entity Framework (EF) is an open-source object-relational
mapping for ADO.NET

- Allows us to have a ‘model’ in our application

- The power of OO programming applied to our database
logic

EF object-relational mapping

• A database is mapped to a class

• Each table is a distinct class that inherits from DbSet

A DbSet is a generic type (see
https://msdn.microsoft.com/en-
us/library/512aeb7t.aspx) that is parameterised with a
class for the row instances

• Each row in the database is an instance of class

- One property per column

https://msdn.microsoft.com/en-us/library/512aeb7t.aspx

Our Model: Employee.cs

...

using System.Data.Entity;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace Console_Connect;

{

public class EmployeesContext : DbContext

{

public EmployeesContext() : base("MySqlConnection") { }

public DbSet<Employee> Employees { get; set; }

}

[Table("employee")]

public class Employee

{

[Key]

public int id { get; set; }

public string Surname { get; set; }

public string GivenNames { get; set; }

public DateTime DateOfBirth { get; set; }

}

First ‘using’ directive is added for
referencing the DbContext object; next
two are for the ‘key’ and ‘table’ data
annotations

Use that connection we added to the
App.config file

Our context’s DbSet ‘Employees’
will be a collection of objects of
type Employee

The table in
MySQL is named

‘employee’
Define properties of
this class with
names matched to
table fields in
MySQL ([Key]
identifies ‘id’ as the
primary key as set in
MySQL)

Each column modelled as a property
(rather than just a field) with default get

and set methods

namespace
matches the

application’s Main

All public so
they’ll be visible

to the Main

Some action logic using the model

We can place this in the Main method of a Console application

Or in an event handler or action listener in other application
templates

...

using (EmployeesContext db = new EmployeesContext())

{

Console.WriteLine(String.Format("Connection string: {0}",

db.Database.Connection.ConnectionString));

int j = db.Employees.Count();

Console.WriteLine(String.Format("We have {0} records.", j));

var x2 = db.Database.SqlQuery<Employee>("select * from employee");

foreach (Employee emp in x2)

{

Console.WriteLine(String.Format("Employee: {0}, DoB: {1:d}",

emp.Surname,emp.DateOfBirth));

}

...

Open the connection by making an instance of our specialised
child of DbContext; using statement manages closing
connection when we leave the statements curly braces

db has an Employees class that
inherits from DbSet; it has some

methods, like count

Native SQL query that will return
instances of Employee

From the model, the compiler knows the names and data
types of the properties for a row from the table

Focus on some of language elements

• These aren’t restricted to EF or working with
databases

Just really handy C# stuff!

var x2 = db.Database.SqlQuery<Employee>("select * from employee");

foreach (Employee emp in x2) {...

‘Generics’ – take a type as a parameter (marked with angle brackets);
let’s us have code that general in terms of the type of object it works

with. In this case, we’re saying we expect the method to return an
ordered set of whatever is put in the type parameter

Implicitly typed local variable (var) – we don’t have to worry on exactly what it’s called…
in this case System.Data.Entity.Infrastructure.DbRawSqlQuery<TElement> (phew!)

foreach loop – we get to name the index variable, emp, which is of the type of the elements
in the collection x2 (Employee, in this case); you can make a foreach on an array

By the way, the system doesn’t actually attempt to run the query until we enumerate it (i.e.
until it needs to provide the answer)

And from the model definition

• How C# does basic OO

public class EmployeesContext : DbContext

{

public EmployeesContext() : base("MySqlConnection") { } ...

Colon (:) operator in a class definition says what class to derive a
new ‘child’ class from

‘base’ keyword says to access the derived
(parent) class; and a public method with the

same name as the class is a constructor
(runs when we do ‘new’) – so this is saying

that a ‘new’ EmployeeContext with no
parameters should be implemented as a

new DbContext passed the string
“MySqlConnection”

That’s all we wanted to do, so no code in the
curly braces… could’ve added additional stuff

to happen after running the parent’s
constructor

Query with more specific return value

• Let’s say we don’t want all the fields in the table, but just a specific
subset

• We need a class for the return values

x3 is implicitly typed for the SqlQuery return value, but we still need
a parameter for the generic type

Thus we need to add to our model a class definition

We could do something similar if we wanted a subset of fields from a
join

...

var x3 = db.Database.SqlQuery<EmpName>("select Surname,GivenNames from

employee");

foreach (EmpName e2 in x3) {

Console.WriteLine("Given Names: " + e2.GivenNames + " Surname: "

+ e2.Surname);

}...

public class EmpName

{

public string Surname { get; set; }

public string GivenNames { get; set; }

}

A query with a ‘lambda’

• Built-in methods derived from DbSet* can save us from making
an explicit query for many needs

Here the Where method expects as its parameter a function that
operates on an instance on the elements of Employees and
returns a boolean

We use the ‘lambda’ syntax to specify this (=> operator, can read
as ‘such that’)

So this tests each employee record to see if their surname is
“Good”
(‘a’ is an arbitrary variable name like the iterator variable in a for
loop)

foreach (var x in db.Employees.Where(a => a.Surname == "Good"))

{

Console.WriteLine(String.Format("Employee {0}; date of birth:

{1:d}", x.GivenNames + " " + x.Surname, x.DateOfBirth));

}

Oracle ADO.Net Example

• https://www.oracle.com/webfolder/technetwork
/tutorials/obe/db/dotnet/GettingStartedNETVers
ion/GettingStartedNETVersion.htm

Create a simple data application by
using ADO.NET

• https://docs.microsoft.com/en-
us/visualstudio/data-tools/create-a-simple-
data-application-by-using-adonet?view=vs-
2019

https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/dotnet/GettingStartedNETVersion/GettingStartedNETVersion.htm
https://docs.microsoft.com/en-us/visualstudio/data-tools/create-a-simple-data-application-by-using-adonet?view=vs-2019

